feat(medications): 增加基于视觉AI的药品智能录入系统

构建了从照片到药品档案的自动化处理流程,通过GLM多模态大模型实现药品信息的智能采集:

核心能力:
- 创建任务追踪表 t_medication_recognition_tasks 存储识别任务状态
- 四阶段渐进式分析:基础识别→人群适配→成分解析→风险评估
- 提供三个REST端点支持任务创建、进度查询和结果确认
- 前端可通过轮询方式获取0-100%的实时进度反馈
- VIP用户免费使用,普通用户按次扣费

技术实现:
- 利用GLM-4V-Plus模型处理多角度药品图像(正面+侧面+说明书)
- 采用GLM-4-Flash模型进行文本深度分析
- 异步任务执行机制避免接口阻塞
- 完整的异常处理和任务失败恢复策略
- 新增AI_RECOGNITION.md文档详细说明集成方式

同步修复:
- 修正会员用户AI配额扣减逻辑,避免不必要的次数消耗
- 优化APNs推送中无效设备令牌的检测和清理流程
- 将服药提醒的提前通知时间从15分钟缩短为5分钟
This commit is contained in:
richarjiang
2025-11-21 10:27:59 +08:00
parent 75fbea2c90
commit a17fe0b965
14 changed files with 1706 additions and 74 deletions

View File

@@ -0,0 +1,523 @@
import { Injectable, Logger, NotFoundException } from '@nestjs/common';
import { ConfigService } from '@nestjs/config';
import { InjectModel } from '@nestjs/sequelize';
import { OpenAI } from 'openai';
import { MedicationRecognitionTask } from '../models/medication-recognition-task.model';
import { CreateRecognitionTaskDto } from '../dto/create-recognition-task.dto';
import { RecognitionStatusDto } from '../dto/recognition-status.dto';
import { RecognitionResultDto } from '../dto/recognition-result.dto';
import {
RecognitionStatusEnum,
RECOGNITION_STATUS_DESCRIPTIONS,
} from '../enums/recognition-status.enum';
import { MedicationFormEnum } from '../enums/medication-form.enum';
/**
* 药物AI识别服务
* 负责多图片药物识别、分析和结构化数据提取
*/
@Injectable()
export class MedicationRecognitionService {
private readonly logger = new Logger(MedicationRecognitionService.name);
private readonly client: OpenAI;
private readonly visionModel: string;
private readonly textModel: string;
constructor(
private readonly configService: ConfigService,
@InjectModel(MedicationRecognitionTask)
private readonly taskModel: typeof MedicationRecognitionTask,
) {
const glmApiKey = this.configService.get<string>('GLM_API_KEY');
const glmBaseURL =
this.configService.get<string>('GLM_BASE_URL') ||
'https://open.bigmodel.cn/api/paas/v4';
this.client = new OpenAI({
apiKey: glmApiKey,
baseURL: glmBaseURL,
});
this.visionModel =
this.configService.get<string>('GLM_VISION_MODEL') || 'glm-4v-plus';
this.textModel =
this.configService.get<string>('GLM_MODEL') || 'glm-4-flash';
}
/**
* 创建识别任务
*/
async createRecognitionTask(
userId: string,
dto: CreateRecognitionTaskDto,
): Promise<{ taskId: string; status: RecognitionStatusEnum }> {
const taskId = `task_${userId}_${Date.now()}`;
this.logger.log(`创建药物识别任务: ${taskId}, 用户: ${userId}`);
await this.taskModel.create({
id: taskId,
userId,
frontImageUrl: dto.frontImageUrl,
sideImageUrl: dto.sideImageUrl,
auxiliaryImageUrl: dto.auxiliaryImageUrl,
status: RecognitionStatusEnum.PENDING,
currentStep: RECOGNITION_STATUS_DESCRIPTIONS[RecognitionStatusEnum.PENDING],
progress: 0,
});
// 异步开始识别过程(不阻塞当前请求)
this.startRecognitionProcess(taskId).catch((error) => {
this.logger.error(
`识别任务 ${taskId} 处理失败: ${error instanceof Error ? error.message : String(error)}`,
);
});
return { taskId, status: RecognitionStatusEnum.PENDING };
}
/**
* 查询识别状态
*/
async getRecognitionStatus(
taskId: string,
userId: string,
): Promise<RecognitionStatusDto> {
const task = await this.taskModel.findOne({
where: { id: taskId, userId },
});
if (!task) {
throw new NotFoundException('识别任务不存在');
}
return {
taskId: task.id,
status: task.status as RecognitionStatusEnum,
currentStep: task.currentStep,
progress: task.progress,
result: task.recognitionResult
? JSON.parse(task.recognitionResult)
: undefined,
errorMessage: task.errorMessage,
createdAt: task.createdAt,
completedAt: task.completedAt,
};
}
/**
* 开始识别处理流程
*/
private async startRecognitionProcess(taskId: string): Promise<void> {
try {
const task = await this.taskModel.findByPk(taskId);
if (!task) return;
// 阶段1: 产品识别分析 (0-40%)
await this.updateTaskStatus(
taskId,
RecognitionStatusEnum.ANALYZING_PRODUCT,
'正在识别药品基本信息...',
10,
);
const productInfo = await this.recognizeProduct(task);
await this.updateTaskStatus(
taskId,
RecognitionStatusEnum.ANALYZING_PRODUCT,
'药品基本信息识别完成',
40,
);
// 阶段2: 适宜人群分析 (40-60%)
await this.updateTaskStatus(
taskId,
RecognitionStatusEnum.ANALYZING_SUITABILITY,
'正在分析适宜人群...',
50,
);
const suitabilityInfo = await this.analyzeSuitability(productInfo);
await this.updateTaskStatus(
taskId,
RecognitionStatusEnum.ANALYZING_SUITABILITY,
'适宜人群分析完成',
60,
);
// 阶段3: 成分分析 (60-80%)
await this.updateTaskStatus(
taskId,
RecognitionStatusEnum.ANALYZING_INGREDIENTS,
'正在分析主要成分...',
70,
);
const ingredientsInfo = await this.analyzeIngredients(productInfo);
await this.updateTaskStatus(
taskId,
RecognitionStatusEnum.ANALYZING_INGREDIENTS,
'成分分析完成',
80,
);
// 阶段4: 副作用分析 (80-100%)
await this.updateTaskStatus(
taskId,
RecognitionStatusEnum.ANALYZING_EFFECTS,
'正在分析副作用和健康建议...',
90,
);
const effectsInfo = await this.analyzeEffects(productInfo);
// 合并所有结果
const finalResult = {
...productInfo,
...suitabilityInfo,
...ingredientsInfo,
...effectsInfo,
} as RecognitionResultDto;
// 完成识别
await this.completeTask(taskId, finalResult);
this.logger.log(`识别任务 ${taskId} 完成`);
} catch (error) {
const errorMessage =
error instanceof Error ? error.message : String(error);
this.logger.error(`识别任务 ${taskId} 失败: ${errorMessage}`);
await this.failTask(taskId, errorMessage);
}
}
/**
* 阶段1: 识别药品基本信息
*/
private async recognizeProduct(
task: MedicationRecognitionTask,
): Promise<Partial<RecognitionResultDto>> {
const prompt = this.buildProductRecognitionPrompt();
const images = [task.frontImageUrl, task.sideImageUrl];
if (task.auxiliaryImageUrl) images.push(task.auxiliaryImageUrl);
this.logger.log(
`调用视觉模型识别药品,图片数量: ${images.length}, 任务ID: ${task.id}`,
);
const response = await this.client.chat.completions.create({
model: this.visionModel,
temperature: 0.3,
messages: [
{
role: 'user',
content: [
{ type: 'text', text: prompt },
...images.map((url) => ({
type: 'image_url',
image_url: { url },
})),
] as any,
},
],
response_format: { type: 'json_object' },
} as any);
const content = response.choices[0]?.message?.content;
if (!content) {
throw new Error('AI模型返回内容为空');
}
const parsed = this.parseJsonResponse(content);
this.logger.log(`药品基本信息识别完成: ${parsed.name}, 置信度: ${parsed.confidence}`);
return parsed;
}
/**
* 阶段2: 分析适宜人群
*/
private async analyzeSuitability(
productInfo: Partial<RecognitionResultDto>,
): Promise<Partial<RecognitionResultDto>> {
const prompt = this.buildSuitabilityAnalysisPrompt(productInfo);
this.logger.log(`分析适宜人群: ${productInfo.name}`);
const response = await this.client.chat.completions.create({
model: this.textModel,
temperature: 0.7,
messages: [
{
role: 'user',
content: prompt,
},
],
response_format: { type: 'json_object' },
});
const content = response.choices[0]?.message?.content;
if (!content) {
throw new Error('AI模型返回内容为空');
}
return this.parseJsonResponse(content);
}
/**
* 阶段3: 分析主要成分
*/
private async analyzeIngredients(
productInfo: Partial<RecognitionResultDto>,
): Promise<Partial<RecognitionResultDto>> {
const prompt = this.buildIngredientsAnalysisPrompt(productInfo);
this.logger.log(`分析主要成分: ${productInfo.name}`);
const response = await this.client.chat.completions.create({
model: this.textModel,
temperature: 0.7,
messages: [
{
role: 'user',
content: prompt,
},
],
response_format: { type: 'json_object' },
});
const content = response.choices[0]?.message?.content;
if (!content) {
throw new Error('AI模型返回内容为空');
}
return this.parseJsonResponse(content);
}
/**
* 阶段4: 分析副作用和健康建议
*/
private async analyzeEffects(
productInfo: Partial<RecognitionResultDto>,
): Promise<Partial<RecognitionResultDto>> {
const prompt = this.buildEffectsAnalysisPrompt(productInfo);
this.logger.log(`分析副作用和健康建议: ${productInfo.name}`);
const response = await this.client.chat.completions.create({
model: this.textModel,
temperature: 0.7,
messages: [
{
role: 'user',
content: prompt,
},
],
response_format: { type: 'json_object' },
});
const content = response.choices[0]?.message?.content;
if (!content) {
throw new Error('AI模型返回内容为空');
}
return this.parseJsonResponse(content);
}
/**
* 构建产品识别提示词
*/
private buildProductRecognitionPrompt(): string {
return `你是一位拥有20年从业经验的资深药剂师请根据提供的药品图片包括正面、侧面和可能的辅助面进行详细分析。
**分析要求**
1. 仔细观察药品包装、说明书上的所有信息
2. 识别药品的完整名称(通用名和商品名)
3. 确定药物剂型(片剂/胶囊/注射剂等)
4. 提取规格剂量信息
5. 推荐合理的服用次数和时间
**置信度评估标准**
- 如果图片清晰且信息完整,置信度应 >= 0.8
- 如果部分信息不清晰但可推断,置信度 0.5-0.8
- 如果无法准确识别,置信度 < 0.5name返回"无法识别"
**返回严格的JSON格式**不要包含任何markdown标记
{
"name": "药品完整名称",
"photoUrl": "使用正面图片URL",
"form": "剂型(tablet/capsule/injection/drops/syrup/ointment/powder/granules)",
"dosageValue": 剂量数值(数字),
"dosageUnit": "剂量单位",
"timesPerDay": 建议每日服用次数(数字),
"medicationTimes": ["建议的服药时间格式HH:mm"],
"confidence": 识别置信度(0-1的小数)
}
**重要**
- dosageValue 和 timesPerDay 必须是数字类型,不要加引号
- confidence 必须是 0-1 之间的小数
- medicationTimes 必须是 HH:mm 格式的时间数组
- form 必须是枚举值之一
- 如果无法识别name返回"无法识别",其他字段返回合理的默认值`;
}
/**
* 构建适宜人群分析提示词
*/
private buildSuitabilityAnalysisPrompt(
productInfo: Partial<RecognitionResultDto>,
): string {
return `作为资深药剂师,请分析以下药品的适宜人群和禁忌人群:
**药品信息**
- 名称:${productInfo.name}
- 剂型:${productInfo.form}
- 剂量:${productInfo.dosageValue}${productInfo.dosageUnit}
请以严格的JSON格式返回不要包含任何markdown标记
{
"suitableFor": ["适合人群1", "适合人群2", "适合人群3"],
"unsuitableFor": ["不适合人群1", "不适合人群2", "不适合人群3"],
"mainUsage": "药品的主要用途和适应症描述"
}
**要求**
- suitableFor 和 unsuitableFor 必须是字符串数组至少包含3项
- mainUsage 是字符串,描述药品的主要治疗用途
- 如果无法识别药品所有数组返回空数组mainUsage返回"无法识别药品"`;
}
/**
* 构建成分分析提示词
*/
private buildIngredientsAnalysisPrompt(
productInfo: Partial<RecognitionResultDto>,
): string {
return `作为资深药剂师,请分析以下药品的主要成分:
**药品信息**
- 名称:${productInfo.name}
- 用途:${productInfo.mainUsage}
请以严格的JSON格式返回不要包含任何markdown标记
{
"mainIngredients": ["主要成分1", "主要成分2", "主要成分3"]
}
**要求**
- mainIngredients 必须是字符串数组,列出药品的主要活性成分
- 至少包含1-3个主要成分
- 如果无法确定,返回空数组`;
}
/**
* 构建副作用分析提示词
*/
private buildEffectsAnalysisPrompt(
productInfo: Partial<RecognitionResultDto>,
): string {
return `作为资深药剂师,请分析以下药品的副作用、储存建议和健康建议:
**药品信息**
- 名称:${productInfo.name}
- 用途:${productInfo.mainUsage}
- 成分:${productInfo.mainIngredients?.join('、')}
请以严格的JSON格式返回不要包含任何markdown标记
{
"sideEffects": ["副作用1", "副作用2", "副作用3"],
"storageAdvice": ["储存建议1", "储存建议2", "储存建议3"],
"healthAdvice": ["健康建议1", "健康建议2", "健康建议3"]
}
**要求**
- 所有字段都是字符串数组
- sideEffects: 列出常见和严重的副作用至少3项
- storageAdvice: 提供正确的储存方法至少2项
- healthAdvice: 给出配合用药的生活建议至少3项
- 如果无法确定,返回空数组`;
}
/**
* 解析JSON响应
*/
private parseJsonResponse(content: string): any {
try {
// 移除可能的 markdown 代码块标记
let jsonString = content.trim();
const jsonMatch = content.match(/```json\s*([\s\S]*?)\s*```/);
if (jsonMatch) {
jsonString = jsonMatch[1];
} else {
// 尝试提取第一个 { 到最后一个 }
const firstBrace = content.indexOf('{');
const lastBrace = content.lastIndexOf('}');
if (firstBrace !== -1 && lastBrace !== -1) {
jsonString = content.substring(firstBrace, lastBrace + 1);
}
}
return JSON.parse(jsonString);
} catch (error) {
this.logger.error(
`解析JSON响应失败: ${error instanceof Error ? error.message : String(error)}, Content: ${content}`,
);
throw new Error('AI响应格式错误无法解析');
}
}
/**
* 更新任务状态
*/
private async updateTaskStatus(
taskId: string,
status: RecognitionStatusEnum,
currentStep: string,
progress: number,
): Promise<void> {
await this.taskModel.update(
{
status,
currentStep,
progress,
},
{
where: { id: taskId },
},
);
}
/**
* 完成任务
*/
private async completeTask(
taskId: string,
result: RecognitionResultDto,
): Promise<void> {
await this.taskModel.update(
{
status: RecognitionStatusEnum.COMPLETED,
currentStep: RECOGNITION_STATUS_DESCRIPTIONS[RecognitionStatusEnum.COMPLETED],
progress: 100,
recognitionResult: JSON.stringify(result),
completedAt: new Date(),
},
{
where: { id: taskId },
},
);
}
/**
* 任务失败
*/
private async failTask(taskId: string, errorMessage: string): Promise<void> {
await this.taskModel.update(
{
status: RecognitionStatusEnum.FAILED,
currentStep: RECOGNITION_STATUS_DESCRIPTIONS[RecognitionStatusEnum.FAILED],
progress: 0,
errorMessage,
completedAt: new Date(),
},
{
where: { id: taskId },
},
);
}
}