新增训练计划模块,包括控制器、服务、模型及数据传输对象,更新应用模块以引入新模块,同时在AI教练模块中添加体态评估功能,支持体重识别与更新,优化用户体重历史记录管理。

This commit is contained in:
richarjiang
2025-08-14 12:57:03 +08:00
parent 8c358a21f7
commit 24924e5d81
26 changed files with 935 additions and 5 deletions

View File

@@ -4,6 +4,9 @@ import { OpenAI } from 'openai';
import { Readable } from 'stream';
import { AiMessage, RoleType } from './models/ai-message.model';
import { AiConversation } from './models/ai-conversation.model';
import { PostureAssessment } from './models/posture-assessment.model';
import { UserProfile } from '../users/models/user-profile.model';
import { UsersService } from '../users/users.service';
const SYSTEM_PROMPT = `作为一名资深的普拉提与运动康复教练Pilates Coach我拥有丰富的专业知识包括但不限于运动解剖学、体态评估、疼痛预防、功能性训练、力量与柔韧性训练以及营养与饮食建议。请遵循以下指导原则进行交流 - **话题范围**:讨论将仅限于健康、健身、普拉提、康复、形体训练、柔韧性提升、力量训练、运动损伤预防与恢复、营养与饮食等领域。 - **拒绝回答的内容**:对于医疗诊断、情感心理支持、时政金融分析或编程等非相关或高风险问题,我会礼貌地解释为何这些不在我的专业范围内,并尝试将对话引导回上述合适的话题领域内。 - **语言风格**:我的回复将以亲切且专业的态度呈现,尽量做到条理清晰、分点阐述;当需要时,会提供可以在家轻松实践的具体步骤指南及注意事项;同时考虑到不同水平参与者的需求,特别是那些可能有轻微不适或曾受过伤的人群,我会给出相应的调整建议和安全提示。 - **个性化与安全性**:强调每个人的身体状况都是独一无二的,在提出任何锻炼计划之前都会提醒大家根据自身情况适当调整强度;如果涉及到具体的疼痛问题或是旧伤复发的情况,则强烈建议先咨询医生的意见再开始新的训练项目。 - **设备要求**:所有推荐的练习都假设参与者只有基础的家庭健身器材可用,比如瑜伽垫、弹力带或者泡沫轴等;此外还会对每项活动的大致持续时间和频率做出估计,并分享一些自我监测进步的方法。 请告诉我您具体想了解哪方面的信息,以便我能更好地为您提供帮助。`;
@@ -12,8 +15,9 @@ export class AiCoachService {
private readonly logger = new Logger(AiCoachService.name);
private readonly client: OpenAI;
private readonly model: string;
private readonly visionModel: string;
constructor(private readonly configService: ConfigService) {
constructor(private readonly configService: ConfigService, private readonly usersService: UsersService) {
const dashScopeApiKey = this.configService.get<string>('DASHSCOPE_API_KEY') || 'sk-e3ff4494c2f1463a8910d5b3d05d3143';
const baseURL = this.configService.get<string>('DASHSCOPE_BASE_URL') || 'https://dashscope.aliyuncs.com/compatible-mode/v1';
@@ -23,6 +27,7 @@ export class AiCoachService {
});
// 默认选择通义千问对话模型OpenAI兼容名可通过环境覆盖
this.model = this.configService.get<string>('DASHSCOPE_MODEL') || 'qwen-flash';
this.visionModel = this.configService.get<string>('DASHSCOPE_VISION_MODEL') || 'qwen-vl-plus';
}
async createOrAppendMessages(params: {
@@ -64,9 +69,13 @@ export class AiCoachService {
userId: string;
conversationId: string;
userContent: string;
systemNotice?: string;
}): Promise<Readable> {
// 上下文:系统提示 + 历史 + 当前用户消息
const messages = await this.buildChatHistory(params.userId, params.conversationId);
if (params.systemNotice) {
messages.unshift({ role: 'system', content: params.systemNotice });
}
const stream = await this.client.chat.completions.create({
model: this.model,
@@ -160,6 +169,143 @@ export class AiCoachService {
await AiConversation.destroy({ where: { id: conversationId, userId } });
return true;
}
/**
* AI体态评估
* - 汇总用户身高体重
* - 使用视觉模型读取三张图片(正/侧/背)
* - 通过强约束的 JSON Schema 产出结构化结果
* - 存储评估记录并返回
*/
async assessPosture(params: {
userId: string;
frontImageUrl: string;
sideImageUrl: string;
backImageUrl: string;
heightCm?: number;
weightKg?: number;
}) {
// 获取默认身高体重
let heightCm: number | undefined = params.heightCm;
let weightKg: number | undefined = params.weightKg;
if (heightCm == null || weightKg == null) {
const profile = await UserProfile.findOne({ where: { userId: params.userId } });
if (heightCm == null) heightCm = profile?.height ?? undefined;
if (weightKg == null) weightKg = profile?.weight ?? undefined;
}
const schemaInstruction = `请以严格合法的JSON返回体态评估结果键名与类型必须匹配以下Schema不要输出多余文本
{
"overallScore": number(0-5),
"radar": {
"骨盆中立": number(0-5),
"肩带稳": number(0-5),
"胸廓控": number(0-5),
"主排列": number(0-5),
"柔对线": number(0-5),
"核心": number(0-5)
},
"frontView": {
"描述": string,
"问题要点": string[],
"建议动作": string[]
},
"sideView": {
"描述": string,
"问题要点": string[],
"建议动作": string[]
},
"backView": {
"描述": string,
"问题要点": string[],
"建议动作": string[]
}
}`;
const persona = `你是一名资深体态评估与普拉提康复教练。结合用户提供的三张照片(正面/侧面/背面)进行体态评估。严格限制话题在健康、姿势、普拉提与训练建议范围内。用词亲切但专业,强调安全、循序渐进与个体差异。用户资料:身高${heightCm ?? '未知'}cm体重${weightKg ?? '未知'}kg。`;
const completion = await this.client.chat.completions.create({
model: this.visionModel,
messages: [
{ role: 'system', content: persona },
{
role: 'user',
content: [
{ type: 'text', text: schemaInstruction },
{ type: 'text', text: '这三张图分别是正面、侧面、背面:' },
{ type: 'image_url', image_url: { url: params.frontImageUrl } as any },
{ type: 'image_url', image_url: { url: params.sideImageUrl } as any },
{ type: 'image_url', image_url: { url: params.backImageUrl } as any },
] as any,
},
],
temperature: 0,
response_format: { type: 'json_object' } as any,
});
const raw = completion.choices?.[0]?.message?.content || '{}';
let result: any = {};
try { result = JSON.parse(raw); } catch { }
const overallScore = typeof result.overallScore === 'number' ? result.overallScore : null;
const rec = await PostureAssessment.create({
userId: params.userId,
frontImageUrl: params.frontImageUrl,
sideImageUrl: params.sideImageUrl,
backImageUrl: params.backImageUrl,
heightCm: heightCm != null ? heightCm : null,
weightKg: weightKg != null ? weightKg : null,
overallScore,
result,
});
return { id: rec.id, overallScore, result };
}
private isLikelyWeightLogIntent(text: string | undefined): boolean {
if (!text) return false;
const t = text.toLowerCase();
return /体重|称重|秤|kg|公斤|weigh|weight/.test(t);
}
async maybeExtractAndUpdateWeight(userId: string, imageUrl?: string, userText?: string): Promise<{ weightKg?: number }> {
if (!imageUrl || !this.isLikelyWeightLogIntent(userText)) return {};
try {
const sys = '从照片中读取电子秤的数字单位通常为kg。仅返回JSON例如 {"weightKg": 65.2},若无法识别,返回 {"weightKg": null}。不要添加其他文本。';
const completion = await this.client.chat.completions.create({
model: this.visionModel,
messages: [
{ role: 'system', content: sys },
{
role: 'user',
content: [
{ type: 'text', text: '请从图片中提取体重kg。若图中单位为斤或lb请换算为kg。' },
{ type: 'image_url', image_url: { url: imageUrl } as any },
] as any,
},
],
temperature: 0,
response_format: { type: 'json_object' } as any,
});
const raw = completion.choices?.[0]?.message?.content || '';
let weightKg: number | undefined;
try {
const obj = JSON.parse(raw);
weightKg = typeof obj.weightKg === 'number' ? obj.weightKg : undefined;
} catch {
const m = raw.match(/\d+(?:\.\d+)?/);
weightKg = m ? parseFloat(m[0]) : undefined;
}
if (weightKg && isFinite(weightKg) && weightKg > 0 && weightKg < 400) {
await this.usersService.addWeightByVision(userId, weightKg);
return { weightKg };
}
return {};
} catch (err) {
this.logger.error(`maybeExtractAndUpdateWeight error: ${err instanceof Error ? err.message : String(err)}`);
return {};
}
}
}